Article ID Journal Published Year Pages File Type
4607927 Journal of Approximation Theory 2009 23 Pages PDF
Abstract

An abstract form of the classical approximate sampling theorem is proved for functions on a locally compact abelian group that are continuous, square-integrable and have integrable Fourier transforms. An additional hypothesis that the samples of the function are square-summable is needed to ensure the convergence of the sampling series. As well as establishing the representation of the function as a sampling series plus a remainder term, an asymptotic formula is obtained under mild additional restrictions on the group. In conclusion a converse to Kluvánek's theorem is established.

Related Topics
Physical Sciences and Engineering Mathematics Analysis