Article ID Journal Published Year Pages File Type
4608065 Journal of Approximation Theory 2008 21 Pages PDF
Abstract

We study multiple orthogonal polynomials in the context of biorthogonal ensembles of random matrices. In these ensembles, the eigenvalue probability density function factorizes into a product of two determinants while the eigenvalue correlation functions can be written as a determinant of a kernel function. We show that the kernel is itself an average of a single ratio of characteristic polynomials. In the same vein, we prove that the type I multiple polynomials can be expressed as an average of the inverse of a characteristic polynomial. We finally introduce a new biorthogonal matrix ensemble, namely the chiral unitary perturbed by a source term, whose multiple polynomials are related to the modified Bessel function of the first kind.

Related Topics
Physical Sciences and Engineering Mathematics Analysis