Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4608108 | Journal of Approximation Theory | 2008 | 28 Pages |
The basin of attraction of an asymptotically stable fixed point of the discrete dynamical system given by the iteration xn+1=g(xn) can be determined through sublevel sets of a Lyapunov function. In Giesl [On the determination of the basin of attraction of discrete dynamical systems. J. Difference Equ. Appl. 13(6) (2007) 523–546] a Lyapunov function is constructed by approximating the solution of a difference equation using radial basis functions. However, the resulting Lyapunov function is non-local, i.e. it has no negative discrete orbital derivative in a neighborhood of the fixed point. In this paper we modify the construction method by using the Taylor polynomial and thus obtain a Lyapunov function with negative discrete orbital derivative both locally and globally.