Article ID Journal Published Year Pages File Type
4608108 Journal of Approximation Theory 2008 28 Pages PDF
Abstract

The basin of attraction of an asymptotically stable fixed point of the discrete dynamical system given by the iteration xn+1=g(xn) can be determined through sublevel sets of a Lyapunov function. In Giesl [On the determination of the basin of attraction of discrete dynamical systems. J. Difference Equ. Appl. 13(6) (2007) 523–546] a Lyapunov function is constructed by approximating the solution of a difference equation using radial basis functions. However, the resulting Lyapunov function is non-local, i.e. it has no negative discrete orbital derivative in a neighborhood of the fixed point. In this paper we modify the construction method by using the Taylor polynomial and thus obtain a Lyapunov function with negative discrete orbital derivative both locally and globally.

Related Topics
Physical Sciences and Engineering Mathematics Analysis