Article ID Journal Published Year Pages File Type
4608154 Journal of Approximation Theory 2007 20 Pages PDF
Abstract

We prove that the kernels of the Baskakov–Durrmeyer and the Szász–Mirakjan–Durrmeyer operators are completely monotonic functions. We establish a Bernstein type inequality for these operators and apply the results to the quasi-interpolants recently introduced by Abel. For the Baskakov–Durrmeyer quasi-interpolants, we give a representation as linear combinations of the original Baskakov–Durrmeyer operators and prove an estimate of Jackson–Favard type and a direct theorem in terms of an appropriate K-functional.

Related Topics
Physical Sciences and Engineering Mathematics Analysis