Article ID Journal Published Year Pages File Type
4608910 Journal of Complexity 2007 9 Pages PDF
Abstract

A long standing open question in complexity theory over the reals is the relationship between parallel time and quantifier alternation. It is known that alternating digital quantifiers is weaker than parallel time, which in turn is weaker than alternating unrestricted (real) quantifiers. In this note we consider some complexity classes defined through alternation of mixed digital and unrestricted quantifiers in different patterns. We show that the class of sets decided in parallel polynomial time is sandwiched between two such classes for different patterns.

Related Topics
Physical Sciences and Engineering Mathematics Analysis