Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4608958 | Journal of Complexity | 2009 | 16 Pages |
A new Alternating-Direction Sinc–Galerkin (ADSG) method is developed and contrasted with classical Sinc–Galerkin methods. It is derived from an iterative scheme for solving the Lyapunov equation that arises when a symmetric Sinc–Galerkin method is used to approximate the solution of elliptic partial differential equations. We include parameter choices (derived from numerical experiments) that simplify existing alternating-direction algorithms. We compare the new scheme to a standard method employing Gaussian elimination on a system produced using the Kronecker product and Kronecker sum, as well as to a more efficient algorithm employing matrix diagonalization. We note that the ADSG method easily outperforms Gaussian elimination on the Kronecker sum and, while competitive with matrix diagonalization, does not require the computation of eigenvalues and eigenvectors.