Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4609028 | Journal of Complexity | 2009 | 14 Pages |
Abstract
We prove explicit, i.e., non-asymptotic, error bounds for Markov Chain Monte Carlo methods, such as the Metropolis algorithm. The problem is to compute the expectation (or integral) of ff with respect to a measure ππ which can be given by a density ϱϱ with respect to another measure. A straight simulation of the desired distribution by a random number generator is in general not possible. Thus it is reasonable to use Markov chain sampling with a burn-in. We study such an algorithm and extend the analysis of Lovasz and Simonovits [L. Lovász, M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms 4 (4) (1993) 359–412] to obtain an explicit error bound.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Daniel Rudolf,