Article ID Journal Published Year Pages File Type
4609045 Journal of Complexity 2007 21 Pages PDF
Abstract

We extend the lower bounds on the complexity of computing Betti numbers proved in [P. Bürgisser, F. Cucker, Counting complexity classes for numeric computations II: algebraic and semialgebraic sets, J. Complexity 22 (2006) 147–191] to complex algebraic varieties. More precisely, we first prove that the problem of deciding connectedness of a complex affine or projective variety given as the zero set of integer polynomials is PSPACE-hard. Then we prove PSPACE-hardness for the more general problem of deciding whether the Betti number of fixed order of a complex affine or projective variety is at most some given integer.

Related Topics
Physical Sciences and Engineering Mathematics Analysis