Article ID Journal Published Year Pages File Type
4609142 Journal of Complexity 2006 23 Pages PDF
Abstract

We present computable versions of the Fréchet–Riesz Representation Theorem and the Lax–Milgram Theorem. The classical versions of these theorems play important roles in various problems of mathematical analysis, including boundary value problems of elliptic equations. We demonstrate how their computable versions yield computable solutions of the Neumann and Dirichlet boundary value problems for a simple non-symmetric elliptic differential equation in the one-dimensional case. For the discussion of these elementary boundary value problems, we also provide a computable version of the Theorem of Schauder, which shows that the adjoint of a computably compact operator on Hilbert spaces is computably compact again.

Related Topics
Physical Sciences and Engineering Mathematics Analysis