Article ID Journal Published Year Pages File Type
4609158 Journal of Complexity 2006 21 Pages PDF
Abstract

We consider the global optimization problem for d-variate Lipschitz functions which, in a certain sense, do not increase too slowly in a neighborhood of the global minimizer(s). On these functions, we apply optimization algorithms which use only function values. We propose two adaptive deterministic methods. The first one applies in a situation when the Lipschitz constant L is known. The second one applies if L is unknown. We show that for an optimal method, adaptiveness is necessary and that randomization (Monte Carlo) yields no further advantage. Both algorithms presented have the optimal rate of convergence.

Related Topics
Physical Sciences and Engineering Mathematics Analysis