Article ID Journal Published Year Pages File Type
4609867 Journal of Differential Equations 2015 17 Pages PDF
Abstract

We show how to use the LpLp–LqLq approach to obtain fundamental estimates for the spatial supnorm values of solutions u(x,t)=(u1(x,t),…,um(x,t))u(x,t)=(u1(x,t),…,um(x,t)) to general systems of convection–diffusion equations of the form∂ui∂t+∂∂xfi(x,t,u1,…,um)+∂∂xgi(t,ui)=μi(t)∂2ui∂x2,1≤i≤m, with initial data u(⋅,0)∈Lp0(R)∩L∞(R)u(⋅,0)∈Lp0(R)∩L∞(R) for some 1≤p0<∞1≤p0<∞, where μi(t)>0μi(t)>0, given arbitrary f=(f1,…,fm)f=(f1,…,fm), g=(g1,…,gm)g=(g1,…,gm) such that |f(x,t,u)|≤B(t)|u||f(x,t,u)|≤B(t)|u| for all x∈Rx∈R, t≥0t≥0, u∈Rmu∈Rm, where B∈C0([0,∞[)B∈C0([0,∞[).

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,