Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4610229 | Journal of Differential Equations | 2015 | 23 Pages |
Abstract
Some Schrödinger equations with weighted nonlinear terms are derived from the nonrelativistic limit of nonlinear Klein–Gordon equations in de Sitter spacetime. Local and global solutions for the Cauchy problem are considered in Sobolev spaces for power type and exponential type nonlinear terms. The roles of spatial expansion and contraction on the problem are studied. And a dissipative property of the equations is remarked.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Makoto Nakamura,