Article ID Journal Published Year Pages File Type
4610341 Journal of Differential Equations 2015 54 Pages PDF
Abstract

In this article, we study the expansion of the first Melnikov function appearing by perturbing an integrable and reversible system with a homoclinic loop passing through a nilpotent singular point, and obtain formulas for computing the first coefficients of the expansion. Based on these coefficients, we obtain a lower bound for the maximal number of limit cycles near the homoclinic loop. Moreover, as an application of our main results, we consider a type of integrable and reversible polynomial systems, obtaining at least 3, 4, or 5 limit cycles respectively.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,