Article ID Journal Published Year Pages File Type
4610417 Journal of Differential Equations 2014 36 Pages PDF
Abstract

We study the existence of radially symmetric solutions of FitzHugh–Nagumo type elliptic systems in RNRN (N⩾2N⩾2):equation(⁎)−Δu=g(u)−vin RN,−dΔv+γv=uin RN,(u(x),v(x))→(0,0)as |x|→∞. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functionalIγ(u,v)=12∫RN|∇u|2−d|∇v|2dx−∫RNG(u)+γ2v2−uvdx, defined on Hr1(RN)×Hr1(RN), to find positive and possibly sign-changing solutions of (⁎). In particular, we overcome difficulty related to Palais–Smale condition via our new scaling argument. When g(ξ)=ξ(1−ξ)(ξ−α)g(ξ)=ξ(1−ξ)(ξ−α), α∈(0,12), we improve the existence result of Reinecke–Sweers [23].

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,