Article ID Journal Published Year Pages File Type
4610631 Journal of Differential Equations 2014 32 Pages PDF
Abstract

A nonlinear transport problem of hyperbolic–elliptic type is studied. Estimates of potentials over varying domains and the method of characteristics enable one to treat the initial value problem for Hölder continuous data as an abstract evolution equation via Picard–Lindelöf theorem. In addition, existence for all times is proved. Similar techniques yield the existence of shock front solutions with smooth interfaces at least for a small time interval. By a priori estimates of approximating solutions, the results extend to the case of only bounded initial values. A modification of the system applies to the construction of a diffeomorphism with prescribed Jacobian determinant.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,