Article ID Journal Published Year Pages File Type
4610757 Journal of Differential Equations 2013 29 Pages PDF
Abstract

We present a non-periodic averaging principle for measure functional differential equations and, using the correspondence between solutions of measure functional differential equations and solutions of functional dynamic equations on time scales (see Federson et al., 2012 [8]), we obtain a non-periodic averaging result for functional dynamic equations on time scales. Moreover, using the relation between measure functional differential equations and impulsive measure functional differential equations, we get a non-periodic averaging theorem for these equations. Also, it is a known fact that we can relate impulsive measure functional differential equations and impulsive functional dynamic equations on time scales (see Federson et al., 2013 [9]). Therefore, applying this correspondence to our averaging principle, we obtain a non-periodic averaging theorem for impulsive functional dynamic equations on time scales.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,