Article ID Journal Published Year Pages File Type
4610846 Journal of Differential Equations 2013 20 Pages PDF
Abstract

Mixed superposition rules, i.e., functions describing the general solution of a system of first-order differential equations in terms of a generic family of particular solutions of first-order systems and some constants, are studied. The main achievement is a generalization of the celebrated Lie–Scheffers Theorem, characterizing systems admitting a mixed superposition rule. This somehow unexpected result says that such systems are exactly Lie systems, i.e., they admit a standard superposition rule. This provides a new and powerful tool for finding Lie systems, which is applied here to studying the Riccati hierarchy and to retrieving some known results in a more efficient and simpler way.

Related Topics
Physical Sciences and Engineering Mathematics Analysis