Article ID Journal Published Year Pages File Type
4610959 Journal of Differential Equations 2012 42 Pages PDF
Abstract

Long-time behavior of solutions to a von Karman plate equation is considered. The system has an unrestricted first-order perturbation and a nonlinear damping acting through free boundary conditions only.This model differs from those previously considered (e.g. in the extensive treatise (Chueshov and Lasiecka, 2010 [11])) because the semi-flow may be of a non-gradient type: the unique continuation property is not known to hold, and there is no strict Lyapunov function on the natural finite-energy space. Consequently, global bounds on the energy, let alone the existence of an absorbing ball, cannot be a priori inferred. Moreover, the free boundary conditions are not recognized by weak solutions and some helpful estimates available for clamped, hinged or simply-supported plates cannot be invoked.It is shown that this non-monotone flow can converge to a global compact attractor with the help of viscous boundary damping and appropriately structured restoring forces acting only on the boundary or its collar.

Related Topics
Physical Sciences and Engineering Mathematics Analysis