Article ID Journal Published Year Pages File Type
4611075 Journal of Differential Equations 2010 26 Pages PDF
Abstract

In this paper, one-dimensional (1D) nonlinear wave equation utt−uxx+mu+u3=0, subject to Dirichlet boundary conditions is considered. We show that for each given m>0, and each prescribed integer b>1, the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with b-dimensional Diophantine frequencies, which correspond to b-dimensional invariant tori of an associated infinite-dimensional dynamical system. In particular, these Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.

Related Topics
Physical Sciences and Engineering Mathematics Analysis