Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4611170 | Journal of Differential Equations | 2011 | 22 Pages |
Abstract
In this paper we consider radially symmetric solutions of the nonlinear Dirichlet problem Δu+f(|x|,u)=0 in Ω, where Ω is a ball in RN, N⩾3 and f satisfies some appropriate assumptions. We prove existence of radially symmetric solutions with k prescribed number of zeros. Moreover, when f(|x|,u)=K(|x|)|u|p−1u, using the uniqueness result due to Tanaka (2008) [21], we verify that these solutions are non-degenerate and we prove that their radial Morse index is exactly k.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis