Article ID Journal Published Year Pages File Type
4611170 Journal of Differential Equations 2011 22 Pages PDF
Abstract

In this paper we consider radially symmetric solutions of the nonlinear Dirichlet problem Δu+f(|x|,u)=0 in Ω, where Ω is a ball in RN, N⩾3 and f satisfies some appropriate assumptions. We prove existence of radially symmetric solutions with k prescribed number of zeros. Moreover, when f(|x|,u)=K(|x|)|u|p−1u, using the uniqueness result due to Tanaka (2008) [21], we verify that these solutions are non-degenerate and we prove that their radial Morse index is exactly k.

Related Topics
Physical Sciences and Engineering Mathematics Analysis