Article ID Journal Published Year Pages File Type
4611432 Journal of Differential Equations 2010 44 Pages PDF
Abstract

This article concerns arbitrary finite heteroclinic networks in any phase space dimension whose vertices can be a random mixture of equilibria and periodic orbits. In addition, tangencies in the intersection of un/stable manifolds are allowed. The main result is a reduction to algebraic equations of the problem to find all solutions that are close to the heteroclinic network for all time, and their parameter values. A leading order expansion is given in terms of the time spent near vertices and, if applicable, the location on the non-trivial tangent directions. The only difference between a periodic orbit and an equilibrium is that the time parameter is discrete for a periodic orbit. The essential assumptions are hyperbolicity of the vertices and transversality of parameters. Using the result, conjugacy to shift dynamics for a generic homoclinic orbit to a periodic orbit is proven. Finally, equilibrium-to-periodic orbit heteroclinic cycles of various types are considered.

Related Topics
Physical Sciences and Engineering Mathematics Analysis