Article ID Journal Published Year Pages File Type
4611436 Journal of Differential Equations 2010 32 Pages PDF
Abstract

In this paper we study in detail the geometrical structure of global pullback and forwards attractors associated to non-autonomous Lotka–Volterra systems in all the three cases of competition, symbiosis or prey–predator. In particular, under some conditions on the parameters, we prove the existence of a unique nondegenerate global solution for these models, which attracts any other complete bounded trajectory. Thus, we generalize the existence of a unique strictly positive stable (stationary) solution from the autonomous case and we extend to Lotka–Volterra systems the result for scalar logistic equations. To this end we present the sub-supertrajectory tool as a generalization of the now classical sub-supersolution method. In particular, we also conclude pullback and forwards permanence for the above models.

Related Topics
Physical Sciences and Engineering Mathematics Analysis