Article ID Journal Published Year Pages File Type
4611488 Journal of Differential Equations 2013 37 Pages PDF
Abstract

It is well known that solutions of ordinary differential equations are continuously dependent on finite-dimensional parameters in equations. In this paper we study the dependence of solutions and eigenvalues of second-order linear measure differential equations on measures as an infinitely dimensional parameter. We will provide two fundamental results, which are the continuity and continuous Fréchet differentiability in measures when the weak⁎ topology and the norm topology of total variations for measures are considered respectively. In some sense the continuity result obtained in this paper is the strongest one. As an application, we will give a natural, simple explanation to extremal problems of eigenvalues of Sturm–Liouville operators with integrable potentials.

Related Topics
Physical Sciences and Engineering Mathematics Analysis