Article ID Journal Published Year Pages File Type
4611537 Journal of Differential Equations 2010 29 Pages PDF
Abstract

The Boussinesq approximation to the Fourier–Navier–Stokes (F–N–S) flows under the electromagnetic field is considered. Such a model is the so-called Maxwell–Boussinesq approximation. We propose a new approach to the problem. We prove the existence and uniqueness of weak solutions to the variational formulation of the model. Some further regularity in W1,2+δ, δ>0, is obtained for the weak solutions. The shape sensitivity analysis by the boundary variations technique is performed for the weak solutions. As a result, the existence of the strong material derivatives for the weak solutions of the problem is shown. The result can be used to establish the shape differentiability for a broad class of shape functionals for the models of Fourier–Navier–Stokes flows under the electromagnetic field.

Related Topics
Physical Sciences and Engineering Mathematics Analysis