Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4611587 | Journal of Differential Equations | 2012 | 32 Pages |
Abstract
We consider a reaction–diffusion system of activator–inhibitor or substrate-depletion type which is subject to diffusion-driven instability if supplemented by pure Neumann boundary conditions. We show by a degree-theoretic approach that an obstacle (e.g. a unilateral membrane) modeled in terms of inequalities, introduces new bifurcation of spatial patterns in a parameter domain where the trivial solution of the problem without the obstacle is stable. Moreover, this parameter domain is rather different from the known case when also Dirichlet conditions are assumed. In particular, bifurcation arises for fast diffusion of activator and slow diffusion of inhibitor which is the difference from all situations which we know.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis