Article ID Journal Published Year Pages File Type
4611608 Journal of Differential Equations 2009 26 Pages PDF
Abstract

This paper concerns the hyperbolic mean curvature flow (HMCF) for plane curves. A quasilinear wave equation is derived and studied for the motion of plane curves under the HMCF. Based on this, we investigate the formation of singularities in the motion of these curves. In particular, we prove that the motion under the HMCF of periodic plane curves with small variation on one period and small initial velocity in general blows up and singularities develop in finite time. Some blowup results have been obtained and the estimates on the life-span of the solutions are given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis