Article ID Journal Published Year Pages File Type
4611631 Journal of Differential Equations 2010 17 Pages PDF
Abstract

Two-dimensional travelling waves on an ideal fluid with gravity and surface tension over a periodically moving bottom with a small amplitude are studied. The bottom and the wave travel with a same speed. The exact Euler equations are formulated as a spatial dynamic system by using the stream function. A manifold reduction technique is applied to reduce the system into one of ordinary differential equations with finite dimensions. A homoclinic solution to the normal form of this reduced system persists when higher-order terms are added, which gives a generalized solitary wave—the homoclinic solution connecting a periodic solution.

Related Topics
Physical Sciences and Engineering Mathematics Analysis