Article ID Journal Published Year Pages File Type
4611740 Journal of Differential Equations 2012 40 Pages PDF
Abstract

In this paper we establish the existence and uniqueness of strong solutions to the obstacle problem for a class of parabolic sub-elliptic operators in non-divergence form structured on a set of smooth vector fields in Rn, X={X1,…,Xq}, q⩽n, satisfying Hörmanderʼs finite rank condition. We furthermore prove that any strong solution belongs to a suitable class of Hölder continuous functions. As part of our argument, and this is of independent interest, we prove a Sobolev type embedding theorem, as well as certain a priori interior estimates, valid in the context of Sobolev spaces defined in terms of the system of vector fields.

Related Topics
Physical Sciences and Engineering Mathematics Analysis