Article ID Journal Published Year Pages File Type
4611751 Journal of Differential Equations 2009 18 Pages PDF
Abstract

We consider the Cauchy problem of the Ostrovsky equation. We first prove the time local well-posedness in the anisotropic Sobolev space Hs,a with s>−a/2−3/4 and 0⩽a⩽−1 by the Fourier restriction norm method. This result include the time local well-posedness in Hs with s>−3/4 for both positive and negative dissipation, namely for both βγ>0 and βγ<0. We next consider the weak rotation limit. We prove that the solution of the Ostrovsky equation converges to the solution of the KdV equation when the rotation parameter γ goes to 0 and the initial data of the KdV equation is in L2. To show this result, we prove a bilinear estimate which is uniform with respect to γ.

Related Topics
Physical Sciences and Engineering Mathematics Analysis