Article ID Journal Published Year Pages File Type
4611768 Journal of Differential Equations 2012 31 Pages PDF
Abstract

We study the comparison principle for anisotropic degenerate parabolic–hyperbolic equations with initial and nonhomogeneous boundary conditions. We prove a comparison theorem for any entropy sub- and super-solution, which immediately deduces the L1 contractivity and therefore, uniqueness of entropy solutions. The method used here is based upon the kinetic formulation and the kinetic techniques developed by Lions, Perthame and Tadmor. By adapting and modifying those methods to the case of Dirichlet boundary problems for degenerate parabolic equations we can establish a comparison property. Moreover, in the quasi-isotropic case the existence of entropy solutions is proved.

Related Topics
Physical Sciences and Engineering Mathematics Analysis