Article ID Journal Published Year Pages File Type
4611770 Journal of Differential Equations 2012 21 Pages PDF
Abstract

In this paper, we study the state controllability and nodal profile controllability for a scalar conservation law, with a nonlocal velocity, that models a highly re-entrant manufacturing system as encountered in semi-conductor production. We first prove a local state controllability result, i.e., there exists a control that drives the solution from any given initial data to any desired final data in a certain time period, provided that the initial and final data are both close to a given equilibrium . We also obtain a global state controllability result for the same system, where there is no limitation on the distance between the initial and final data. Finally, we prove a nodal profile controllability result, i.e., there exists a control under which the solution starts from any initial data reaches exactly any given out-flux over a fixed time period.

Related Topics
Physical Sciences and Engineering Mathematics Analysis