Article ID Journal Published Year Pages File Type
4611890 Journal of Differential Equations 2009 26 Pages PDF
Abstract

We consider a class of nonlinear Schrödinger equations in two space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L2) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small initial data, converge to a nonlinear bound state. Therefore, the nonlinear bound states are asymptotically stable. The proof hinges on dispersive estimates that we obtain for the time-dependent, Hamiltonian, linearized dynamics around a carefully chosen one-parameter family of bound states that “shadows” the nonlinear evolution of the system. Due to the generality of the methods we develop we expect them to extend to the case of perturbations of large bound states and to other nonlinear dispersive wave type equations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis