Article ID Journal Published Year Pages File Type
4611928 Journal of Differential Equations 2011 43 Pages PDF
Abstract

In this paper, we investigate the chaotic behavior of ordinary differential equations with a homoclinic orbit to a saddle fixed point under an unbounded random forcing driven by a Brownian motion. We prove that, for almost all sample paths of the Brownian motion in the classical Wiener space, the forced equation admits a topological horseshoe of infinitely many branches. This result is then applied to the randomly forced Duffing equation and the pendulum equation.

Related Topics
Physical Sciences and Engineering Mathematics Analysis