Article ID Journal Published Year Pages File Type
4611980 Journal of Differential Equations 2008 26 Pages PDF
Abstract

The first-order Melnikov function of a homoclinic loop through a nilpotent saddle for general planar near-Hamiltonian systems is considered. The asymptotic expansion of this Melnikov function and formulas for its first coefficients are given. The number of limit cycles which appear near the homoclinic loop is discussed by using the asymptotic expansion of the first-order Melnikov function. An example is presented as an application of the main results.

Related Topics
Physical Sciences and Engineering Mathematics Analysis