Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4611988 | Journal of Differential Equations | 2008 | 22 Pages |
We obtain real analytic invariant manifolds for trajectories of maps assuming only the existence of a nonuniform exponential behavior. We also consider the more general case of sequences of maps, which corresponds to a nonautonomous dynamics with discrete time. We emphasize that the maps that we consider are defined in a real Euclidean space, and thus, one is not able to obtain the invariant manifolds from a corresponding procedure to that in the nonuniform hyperbolicity theory in the context of holomorphic dynamics. We establish the existence both of stable (and unstable) manifolds and of center manifolds. As a byproduct of our approach we obtain an exponential control not only for the trajectories on the invariant manifolds, but also for all their derivatives.