Article ID Journal Published Year Pages File Type
4612052 Journal of Differential Equations 2011 20 Pages PDF
Abstract

Global existence of weak solutions to the Navier–Stokes equations in a cylindrical domain under boundary slip conditions and with inflow and outflow is proved. To prove the energy estimate, crucial for the proof, we use the Hopf function. This makes it possible to derive an estimate such that the inflow and outflow need not vanish as t→∞. The proof requires estimates in weighted Sobolev spaces for solutions to the Poisson equation. Our result is the first step towards proving the existence of global regular special solutions to the Navier–Stokes equations with inflow and outflow.

Related Topics
Physical Sciences and Engineering Mathematics Analysis