Article ID Journal Published Year Pages File Type
4612140 Journal of Differential Equations 2008 36 Pages PDF
Abstract

Classical Liénard equations are two-dimensional vector fields, on the phase plane or on the Liénard plane, related to scalar differential equations . In this paper, we consider f to be a polynomial of degree 2l−1, with l a fixed but arbitrary natural number. The related Liénard equation is of degree 2l. We prove that the number of limit cycles of such an equation is uniformly bounded, if we restrict f to some compact set of polynomials of degree exactly 2l−1. The main problem consists in studying the large amplitude limit cycles, of which we show that there are at most l.

Related Topics
Physical Sciences and Engineering Mathematics Analysis