Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612140 | Journal of Differential Equations | 2008 | 36 Pages |
Abstract
Classical Liénard equations are two-dimensional vector fields, on the phase plane or on the Liénard plane, related to scalar differential equations . In this paper, we consider f to be a polynomial of degree 2l−1, with l a fixed but arbitrary natural number. The related Liénard equation is of degree 2l. We prove that the number of limit cycles of such an equation is uniformly bounded, if we restrict f to some compact set of polynomials of degree exactly 2l−1. The main problem consists in studying the large amplitude limit cycles, of which we show that there are at most l.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis