Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612182 | Journal of Differential Equations | 2010 | 30 Pages |
Abstract
We consider the wave equation with supercritical interior and boundary sources and damping terms. The main result of the paper is local Hadamard well-posedness of finite energy (weak) solutions. The results obtained: (1) extend the existence results previously obtained in the literature (by allowing more singular sources); (2) show that the corresponding solutions satisfy Hadamard well-posedness conditions during the time of existence. This result provides a positive answer to an open question in the area and it allows for the construction of a strongly continuous semigroup representing the dynamics governed by the wave equation with supercritical sources and damping.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis