Article ID Journal Published Year Pages File Type
4612204 Journal of Differential Equations 2008 25 Pages PDF
Abstract

A class of reaction–diffusion equations with time delay and nonlocal response is considered. Assuming that the corresponding reaction equations have heteroclinic orbits connecting an equilibrium point and a periodic solution, we show the existence of traveling wave solutions of large wave speed joining an equilibrium point and a periodic solution for reaction–diffusion equations. Our approach is based on a transformation of the differential equations to integral equations in a Banach space and the rigorous analysis of the property for a corresponding linear operator. Our approach eventually reduces a singular perturbation problem to a regular perturbation problem. The existence of traveling wave solution therefore is obtained by the application of Liapunov–Schmidt method and the Implicit Function Theorem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis