Article ID Journal Published Year Pages File Type
4612231 Journal of Differential Equations 2007 34 Pages PDF
Abstract

In this paper we determine the exact structure of the pullback attractors in non-autonomous problems that are perturbations of autonomous gradient systems with attractors that are the union of the unstable manifolds of a finite set of hyperbolic equilibria. We show that the pullback attractors of the perturbed systems inherit this structure, and are given as the union of the unstable manifolds of a set of hyperbolic global solutions which are the non-autonomous analogues of the hyperbolic equilibria. We also prove, again parallel to the autonomous case, that all solutions converge as t→+∞ to one of these hyperbolic global solutions. We then show how to apply these results to systems that are asymptotically autonomous as t→−∞ and as t→+∞, and use these relatively simple test cases to illustrate a discussion of possible definitions of a forwards attractor in the non-autonomous case.

Related Topics
Physical Sciences and Engineering Mathematics Analysis