Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612231 | Journal of Differential Equations | 2007 | 34 Pages |
In this paper we determine the exact structure of the pullback attractors in non-autonomous problems that are perturbations of autonomous gradient systems with attractors that are the union of the unstable manifolds of a finite set of hyperbolic equilibria. We show that the pullback attractors of the perturbed systems inherit this structure, and are given as the union of the unstable manifolds of a set of hyperbolic global solutions which are the non-autonomous analogues of the hyperbolic equilibria. We also prove, again parallel to the autonomous case, that all solutions converge as t→+∞ to one of these hyperbolic global solutions. We then show how to apply these results to systems that are asymptotically autonomous as t→−∞ and as t→+∞, and use these relatively simple test cases to illustrate a discussion of possible definitions of a forwards attractor in the non-autonomous case.