Article ID Journal Published Year Pages File Type
4612258 Journal of Differential Equations 2007 39 Pages PDF
Abstract

We prove a general convergence result for singular perturbations with an arbitrary number of scales of fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of quasilinear equations driven by a general hypoelliptic operator and the n-scale homogenization of uniformly parabolic fully nonlinear PDEs.

Related Topics
Physical Sciences and Engineering Mathematics Analysis