Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612292 | Journal of Differential Equations | 2007 | 42 Pages |
Abstract
We consider the Liouville equation associated with a metric g of class C2 and we prove dispersion and Strichartz estimates for the solution of this equation in terms of geodesics associated with g. We introduce the notion of focusing and dispersive metric to characterize metrics such that the same dispersion estimate as in the Euclidean case holds. To deal with the case of non-trapped long range perturbation of the Euclidean metric, we prove a global velocity moments effect on the solution. In particular, we obtain global in time Strichartz estimates for metrics such that the dispersion estimate is not satisfied.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis