Article ID Journal Published Year Pages File Type
4612321 Journal of Differential Equations 2007 13 Pages PDF
Abstract

In this work, we are concerned with a reaction–diffusion system well known as the Sel'kov model, which has been used for the study of morphogenesis, population dynamics and autocatalytic oxidation reactions. We derive some further analytic results for the steady states to this model. In particular, we show that no nonconstant positive steady state exists if 01 and large θ, where nonconstant positive steady states can occur. Thus, these conclusions indicate that the parameter p plays a crucial role in leading to spatially nonhomogeneous distribution of the two reactants. The a priori estimates are fundamental to our mathematical approaches.

Related Topics
Physical Sciences and Engineering Mathematics Analysis