Article ID Journal Published Year Pages File Type
4612345 Journal of Differential Equations 2010 19 Pages PDF
Abstract

Using a combination of several methods, such as variational methods, the sub and supersolutions method, comparison principles and a priori estimates, we study existence, multiplicity, and the behavior with respect to λ of positive solutions of p-Laplace equations of the form −Δpu=λh(x,u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x,a(x))=0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros.

Related Topics
Physical Sciences and Engineering Mathematics Analysis