Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612349 | Journal of Differential Equations | 2010 | 18 Pages |
In this paper we present an alternative algorithm for computing Poincaré–Lyapunov constants of simple monodromic singularities of planar analytic vector fields based on the concept of inverse integrating factor. Simple monodromic singular points are those for which after performing the first (generalized) polar blow-up, there appear no singular points. In other words, the associated Poincaré return map is analytic. An improvement of the method determines a priori the minimum number of Poincaré–Lyapunov constants which must cancel to ensure that the monodromic singularity is in fact a center when the explicit Laurent series of an inverse integrating factor is known in (generalized) polar coordinates. Several examples show the usefulness of the method.