Article ID Journal Published Year Pages File Type
4612358 Journal of Differential Equations 2006 46 Pages PDF
Abstract

We study the high-frequency Helmholtz equation, for a potential having C2 smoothness, and satisfying the non-trapping condition. We prove optimal Morrey–Campanato estimates that are both homogeneous in space and uniform in the frequency parameter. The homogeneity of the obtained bounds, together with the weak assumptions we require on the potential, constitute the main new result in the present text. Our result extends previous bounds obtained by Perthame and Vega, in that we do not assume the potential satisfies the virial condition, a strong form of non-trapping.

Related Topics
Physical Sciences and Engineering Mathematics Analysis