Article ID Journal Published Year Pages File Type
4612361 Journal of Differential Equations 2006 50 Pages PDF
Abstract

In this paper we prove rigorous results on persistence of invariant tori and their whiskers. The proofs are based on the parameterization method of [X. Cabré, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2) (2003) 283–328; X. Cabré, E. Fontich, R. de la Llave, The parameterization method for invariant manifolds. II. Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2) (2003) 329–360]. The invariant manifolds results proved here include as particular cases of the usual (strong) stable and (strong) unstable manifolds, but also include other non-resonant manifolds. The method lends itself to numerical implementations whose analysis and implementation is studied in [A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, preprint, 2005; A. Haro, R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical implementation and examples, preprint, 2005]. The results are stated as a posteriori results. Namely, that if one has an approximate solution which is not degenerate, then, one has a true solution not too far from the approximate one. This can be used to validate the results of numerical computations.

Related Topics
Physical Sciences and Engineering Mathematics Analysis