Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612382 | Journal of Differential Equations | 2007 | 64 Pages |
In this paper we give a new perspective on the Cauchy integral and transform and Hardy spaces for Dirac-type operators on manifolds with corners of codimension two. Instead of considering Banach or Hilbert spaces, we use polyhomogeneous functions on a geometrically “blown-up” version of the manifold called the total boundary blow-up introduced by Mazzeo and Melrose [R.R. Mazzeo, R.B. Melrose, Analytic surgery and the eta invariant, Geom. Funct. Anal. 5 (1) (1995) 14–75]. These polyhomogeneous functions are smooth everywhere on the original manifold except at the corners where they have a “Taylor series” (with possible log terms) in polar coordinates. The main application of our analysis is a complete Fredholm theory for boundary value problems of Dirac operators on manifolds with corners of codimension two.