Article ID Journal Published Year Pages File Type
4612530 Journal of Differential Equations 2006 20 Pages PDF
Abstract

In this paper, we use for the first time linearization techniques to deal with boundary blow-up elliptic problems. After introducing a convenient functional setting, we show that the problem Δu=λa(x)up+g(x,u) in Ω, with u=+∞ on ∂Ω, has a unique positive solution for large enough λ, and determine its asymptotic behavior as λ→+∞. Here p>1, a(x) is a continuous function which can be singular near ∂Ω and g(x,u) is a perturbation term with potential growth near zero and infinity. We also consider more general problems, obtained by replacing up by eu or a “logistic type” function f(u).

Related Topics
Physical Sciences and Engineering Mathematics Analysis