Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4612530 | Journal of Differential Equations | 2006 | 20 Pages |
Abstract
In this paper, we use for the first time linearization techniques to deal with boundary blow-up elliptic problems. After introducing a convenient functional setting, we show that the problem Δu=λa(x)up+g(x,u) in Ω, with u=+∞ on ∂Ω, has a unique positive solution for large enough λ, and determine its asymptotic behavior as λ→+∞. Here p>1, a(x) is a continuous function which can be singular near ∂Ω and g(x,u) is a perturbation term with potential growth near zero and infinity. We also consider more general problems, obtained by replacing up by eu or a “logistic type” function f(u).
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis