Article ID Journal Published Year Pages File Type
4612544 Journal of Differential Equations 2010 26 Pages PDF
Abstract

This paper is devoted to the study of the asymptotic dynamics of the stochastic damped sine-Gordon equation with homogeneous Neumann boundary condition. It is shown that for any positive damping and diffusion coefficients, the equation possesses a random attractor, and when the damping and diffusion coefficients are sufficiently large, the random attractor is a one-dimensional random horizontal curve regardless of the strength of noise. Hence its dynamics is not chaotic. It is also shown that the equation has a rotation number provided that the damping and diffusion coefficients are sufficiently large, which implies that the solutions tend to oscillate with the same frequency eventually and the so-called frequency locking is successful.

Related Topics
Physical Sciences and Engineering Mathematics Analysis